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Universality class for a one-dimensional evolution model
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We present numerical evidence that avalanche dynamics in the evolution model has the same universality
class as the diffusion equatignp=x"%3,,p+vx~ % 1g,p. Numerically we measure the exponenand the
drift v and, using the relations provided by the theory of the diffusion equation, we compute the avalanche
critical exponentr and the mass dimension exponénht The computed values agree with the previous nu-
merical results|S1063-651X97)05609-2

PACS numbd(s): 05.40:+j, 87.10+¢€, 64.60.Lx

Bak and SneppefiBS) [1] formulated a coarse-grained w(t)~tP. 2)
description of biological evolution. It originates from models

which tried to find an adaptive dynamics of the genotype in  The spatial width of an avalanche is defined as the num-
the space of mutation2]. Using a simple local dynamical per of sites between the leftmost site with fitness less ¥an
rule the model is able to reach a stationary state in which thgng the rightmost site with fitness less thanAn avalanche
distribution of large size events is scale invariant. From thissnds when its spatial size is zero. The site with the smallest
property one can argue that extinction events involving &itness is also called active.
large number of species are characteristic of the internal |n this paper we present numerical evidence that the ava-
rules of the system and not produced by external agents. Thgnche width dynamics is described asymptotically by a Mar-
mathematical simplicity of the model attracted numericalkgvian continuous time random walCTRW). If the active
studies[1,3,4 and mean-field analytic treatmeri&-7]. site is at one of the extrema of the avalanche or next to this
The model treats a number bFf species interacting on a sijte, the probability that the avalanche increases or decreases
one-dimensional chain viewed as a simple picture of the foogts width by one or two steps sites is determined by the
chain. Each species has an assigned scalar parameter or fiymamic rule of the system, and has no memory effect by the
ness with values in th@, 1) interval, thought to be a measure very rule of the model; on the other hand, the probability that
for the adaptability of species to the ecosystem. One timghe avalanche reduces its width by more than two sites de-
step of the dynamics consists of choosing the site with theyends upon the probability that next to the extreme active
smallest fitness, then new random independent values frogjte there is an interval of a given width with all the fitness
the (0,1) interval are attributed to this site and to its two nigher than. The distribution of the “empty” intervals will
neighbors with a uniform distribution. We defineMaava-  self-average in time; therefore for large times there is a sta-
lanche (G<A<1) of sizet, the event having time steps tjonary probability to jump backward from a given width to
between two consecutive configurations with all the fithessainother one. These arguments make plausible the idea that a
values greater than. For N large the one-site stationary Markovian CTRW can describe the asymptotic behavior of
distribution is vanishingly small fox~0.667, and constant the avalanche width in the BS model. Since we are interested
above this valug¢l]. The avalanche distribution far~0.667  in asymptotic behavior, we take the continuum limit. In this
decays algebraically for large the spatial correlation of the frame a Markovian CTRW is described by a diffusion equa-
activity and the spatial structure of the avalanches also havgon [9] of the type
scale invariant propertigs3,4,8. Numerical simulation and
the scaling the ansatz suggest that the model is described by ap p J
two independent critical exponents; the scaling relations E:a(X)WJF b(X)&, ()
yield the others[8]. The following two exponents are of
interest for us: the critical exponentof the temporal distri-

bution of the avalanches wherea(x) andb(x) are the local variance and the local drift

obtained through the limit procedure from the CTRW.
_ In the BS model the variancx) decreases as the width
p(~t"7, =, 1) of an avalanche increases, since the activity takes longer and

longer time intervals to reach one of the extreffag. 3J); in

and the avalanche mass dimension critical expobewhich  this condition avalanches of all sizes appear if the drift van-

describes the temporal evolution of the average avalanchshes as the width increasg)]. This can also be understood

spatial width intuitively, recalling the fact that for a simple diffusion pro-
cess,a(x)=const, a constant symmetric drift(x)=—|v|
bonds the diffusing particle close to the oridif]; if the

*Present address. Electronic address: anton@roifa.ifa.ro local variance is a decreasing function xaf one can also
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FIG. 1. The distribution of the backwards jumps of the ava- FIG. 2. The local drift and the local variance against avalanche
lanche width. The statistics were collected from avalanches with thevidth. In the inset the average maximal width against avalanche
spatial size higher than 4000 sites. The system size was 8192. temporal size.

infer that the local drift has to decrease fast enough to allowvith ¢, d, and g constants. The asymptotic behavior of the
large-scale events. We impose the null drift condition, seekeoefficients of Eq(3) is obtained by dividing Eqs(5) and
ing an asymtotically zero value for the mean displacement,(6) by the mean lifetime of an avalanche at each site. Nu-
merically, (Fig. 3), we found that the mean lifetime grows
n linearly,
leimf pa(ii, @) y
. T,~nP, p=1.00+0.01.

wherep,(i) is the transition probability of a backward jump

if the avalanche width is. The null drift condition yields a Hence the general equation describing the asymptotic behav-

lower bound for ¢ics . CONsidering only the first two back- ior of the BS model is

ward steps whose probability transition can be computed, we

have op K p K&p v dp
A T ax )

A=3(1-N)2A—(1—N)A?,

whereK, K’, andv are positive constants arg= 8— 3+ p.

A change of scalé— ct, x—c*(¢*2)x transforms the above

equation to

with the positive solution\ yjico=0.5. A backward jumps
higher than two steps will increase,ijica -

If X = N\griical the distribution of the backward jump has an
algebraic tail, as Fig. 1 shows; hence for a finite avalanche K' #p K % v op

width i we have the drift proportional to — =l P
at XP gxs  x® gxc x*TE ox

fn p(i)i=n~F*2, ) This shows that the operator

wherep(i)=Ilim,_.p,(i). This scale invariant structure will K_’ ’9_2

imply that the local variance of the transition probabilities xP 9x?

will behave as

is vanishing as time increases—{ ) if 8<3. Consequently

we can use the Green function of the unperturbed operator to

n
Vi 2 —-p+3 s
A f p(i)i~c+dn . n>1, ©®) derive the critical exponents of the asymptotic behavior. The
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FIG. 3. The characteristic lifetimgn arbitrary unit$ of an ava-
lanche at a given width. This quantity is proportional with the av-
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erage number of steps in which the activity touches the extreme

sites of an avalanche.

critical exponent of the avalanche temporal distributiaran
be obtained from the first return time distribution. In Ref.
[10] we showed that the first return in the origin critical
exponent has the expression
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FIG. 4. The number of first arrivals to a widgr>x without

FIG. 5. The characteristic tim@n arbitrary unit$ in which an
avalanche touches the first time widttstarting from a widthx<y
without passing through the state of zero width. Equa(it®) pre-
dicts t,~y**2—x*"2~y**2 for y>x. The graph confirms the

algebraic behavior.

1-v/K
a+2

=1+

®

The avalanche mass dimension expori@ntan be obtained
from the asymptotic behavior in time of the average width
[10]:

Waverage:foooy—Gt(X’y)dy~t1l(a+2). (9)
JoGi(x,y)dy

We numerically obtained the local variance and the local
drift for the one-dimensional Bak-Sneppen model in the in-
terval (10,10Q. This corresponds to an avalanche maximal
temporal size of order fOas the average maximum width
scalesw,,,~t"*? (Fig. 2). The average lifetime of an ava-
lanche at a given width increases linearly, as Fig. 3 shows.
The critical exponen, defined in Eq.(5), was measured
from the local drift data and from the asymptotic behavior of
the backward jumps distribution; see Figs. 2 and 1. Their
value agrees with3=2.40+0.05. Using Eq.(9), for the
mass dimension exponem® *=0.41+0.02 we obtain a
value which is in agreement with the previous measurements
[3,8]. The precise measurement of the constangdK is
difficult due to the high weight of the short backwards jumps
in respect to the long onegkig. 1). Hence the number of
steps needed to obtain the distribution at every avalanche

passing through the state with zero width. This quantity is predictedvidth is very large.

to behave algebraically by E¢L0). The fit with a power function
(the continuous lingis very good.

There is an indirect but precise method of measuring the
exponentsy and 1—-v/K using the Laplace transform of the
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probability of first arrival iny stating fromx<y without  of width anda+2=2.42+0.02(Fig. 5. This two exponents

touching the origin. For smalN we have[10] allow us to compute the critical exponents of the avalanche
size distribution using EQgs.8) and (9). We obtain
first x| 1010 1 7=1.074+0.004 andD ~1=0.413+0.008. These values are
Py (XY)~ y 1- (a+2)%(v+1) in good agreement with the previous determined ones in the

Ref.[4], 7=1.074+0.004, andD ~1=0.4114+0.0020.
From the above numeric analysis we conclude that the

at2__ yat+2
x(y X )7‘)’ (10 diffusion equation(7) describes the universality class for the

BS models. The basic facts leading to this description are as

where a=3—8+p, y>x. One can see that k=0, the follows.
previous formula gives the probability for an avalanche to (1) The underlying Markov chain reaches the stationary
reach, for the first time, a widtl starting from the widthx ~ state at any finite width of the avalanche; therefore one can
without passing through the state with zero width. Numericakhink in terms of a stationary probability transition from one
simulation gives an algebraic behavigee Fig. 4, and we  width to another one.

obtained +v/K=0.180+0.006. The constant multiplying (2) The probability that the activity remains inside of an

by X in Eq. (10) is the characteristic time for an avalanche toavalanche decreases exponentially in time. This is the second

touch widthy for the first time starting from widtlx. Nu-  ingredient needed to complete the Markovian CTRW pic-
merically we found that it behaves as an algebraic functiorture.
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