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Universality class for a one-dimensional evolution model
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We present numerical evidence that avalanche dynamics in the evolution model has the same universality
class as the diffusion equation] tp5x2a]xxp1vx2a21]xp. Numerically we measure the exponenta and the
drift v and, using the relations provided by the theory of the diffusion equation, we compute the avalanche
critical exponentt and the mass dimension exponentD. The computed values agree with the previous nu-
merical results.@S1063-651X~97!05609-2#

PACS number~s!: 05.40.1j, 87.10.1e, 64.60.Lx
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Bak and Sneppen~BS! @1# formulated a coarse-graine
description of biological evolution. It originates from mode
which tried to find an adaptive dynamics of the genotype
the space of mutations@2#. Using a simple local dynamica
rule the model is able to reach a stationary state in which
distribution of large size events is scale invariant. From t
property one can argue that extinction events involving
large number of species are characteristic of the inte
rules of the system and not produced by external agents.
mathematical simplicity of the model attracted numeri
studies@1,3,4# and mean-field analytic treatments@5–7#.

The model treats a number ofN species interacting on
one-dimensional chain viewed as a simple picture of the f
chain. Each species has an assigned scalar parameter
ness with values in the~0,1! interval, thought to be a measur
for the adaptability of species to the ecosystem. One t
step of the dynamics consists of choosing the site with
smallest fitness, then new random independent values f
the ~0,1! interval are attributed to this site and to its tw
neighbors with a uniform distribution. We define al ava-
lanche (0,l,1) of size t, the event havingt time steps
between two consecutive configurations with all the fitn
values greater thanl. For N large the one-site stationar
distribution is vanishingly small forl'0.667, and constan
above this value@1#. The avalanche distribution forl'0.667
decays algebraically for larget; the spatial correlation of the
activity and the spatial structure of the avalanches also h
scale invariant properties@3,4,8#. Numerical simulation and
the scaling the ansatz suggest that the model is describe
two independent critical exponents; the scaling relatio
yield the others@8#. The following two exponents are o
interest for us: the critical exponentt of the temporal distri-
bution of the avalanches

p~ t !'t2t, t→`, ~1!

and the avalanche mass dimension critical exponentD which
describes the temporal evolution of the average avalan
spatial width

*Present address. Electronic address: anton@roifa.ifa.ro
561063-651X/97/56~3!/2676~4!/$10.00
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w̄~ t !'t1/D. ~2!

The spatial width of an avalanche is defined as the nu
ber of sites between the leftmost site with fitness less thal,
and the rightmost site with fitness less thanl. An avalanche
ends when its spatial size is zero. The site with the smal
fitness is also called active.

In this paper we present numerical evidence that the a
lanche width dynamics is described asymptotically by a M
kovian continuous time random walk~CTRW!. If the active
site is at one of the extrema of the avalanche or next to
site, the probability that the avalanche increases or decre
its width by one or two steps sites is determined by
dynamic rule of the system, and has no memory effect by
very rule of the model; on the other hand, the probability th
the avalanche reduces its width by more than two sites
pends upon the probability that next to the extreme ac
site there is an interval of a given width with all the fitne
higher thanl. The distribution of the ‘‘empty’’ intervals will
self-average in time; therefore for large times there is a
tionary probability to jump backward from a given width t
another one. These arguments make plausible the idea t
Markovian CTRW can describe the asymptotic behavior
the avalanche width in the BS model. Since we are interes
in asymptotic behavior, we take the continuum limit. In th
frame a Markovian CTRW is described by a diffusion equ
tion @9# of the type

]p

]t
5a~x!

]2p

]x2 1b~x!
]p

]x
, ~3!

wherea(x) andb(x) are the local variance and the local dr
obtained through the limit procedure from the CTRW.

In the BS model the variancea(x) decreases as the widt
of an avalanche increases, since the activity takes longer
longer time intervals to reach one of the extrema,~Fig. 3!; in
this condition avalanches of all sizes appear if the drift va
ishes as the width increases@10#. This can also be understoo
intuitively, recalling the fact that for a simple diffusion pro
cess,a(x)5const, a constant symmetric driftb(x)52 uvu
bonds the diffusing particle close to the origin@9#; if the
local variance is a decreasing function ofx, one can also
2676 © 1997 The American Physical Society
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infer that the local drift has to decrease fast enough to al
large-scale events. We impose the null drift condition, se
ing an asymtotically zero value for the mean displaceme

l5 lim
n→`

En

pn~ i !i , ~4!

wherepn( i ) is the transition probability of a backward jum
if the avalanche width isn. The null drift condition yields a
lower bound forlcritical . Considering only the first two back
ward steps whose probability transition can be computed,
have

l53~12l!2l2~12l!l2,

with the positive solutionlcritical50.5. A backward jumps
higher than two steps will increaselcritical .

If l5lcritical the distribution of the backward jump has a
algebraic tail, as Fig. 1 shows; hence for a finite avalan
width i we have the drift proportional to

E
n

`

p~ i !i'n2b12, ~5!

wherep( i )5 limn→`pn( i ). This scale invariant structure wil
imply that the local variance of the transition probabiliti
will behave as

l1En

p~ i !i 2'c1dn2b13, n@1, ~6!

FIG. 1. The distribution of the backwards jumps of the av
lanche width. The statistics were collected from avalanches with
spatial size higher than 4000 sites. The system size was 8192
w
-
,

e

e

with c, d, andb constants. The asymptotic behavior of th
coefficients of Eq.~3! is obtained by dividing Eqs.~5! and
~6! by the mean lifetime of an avalanche at each site. N
merically, ~Fig. 3!, we found that the mean lifetime grow
linearly,

t̄ n'np, p51.0060.01.

Hence the general equation describing the asymptotic be
ior of the BS model is

]p

]t
5

K8

xp

]2p

]x2 1
K

xa

]2p

]x2 1
v

xa11

]p

]x
~7!

whereK, K8, andv are positive constants anda5b231p.
A change of scalet→ct, x→c1/(a12)x transforms the above
equation to

]p

]t
5c12~p12!/~p1b21!

K8

xp

]2p

]x2 1
K

xa

]2p

]x2 1
v

xa11

]p

]x
.

This shows that the operator

K8

xp

]2

]x2

is vanishing as time increases (c→`) if b,3. Consequently
we can use the Green function of the unperturbed operato
derive the critical exponents of the asymptotic behavior. T

FIG. 2. The local drift and the local variance against avalan
width. In the inset the average maximal width against avalan
temporal size.
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2678 56L. ANTON
critical exponent of the avalanche temporal distributiont can
be obtained from the first return time distribution. In Re
@10# we showed that the first return in the origin critic
exponent has the expression

FIG. 3. The characteristic lifetime~in arbitrary units! of an ava-
lanche at a given width. This quantity is proportional with the a
erage number of steps in which the activity touches the extre
sites of an avalanche.

FIG. 4. The number of first arrivals to a widthy.x without
passing through the state with zero width. This quantity is predic
to behave algebraically by Eq.~10!. The fit with a power function
~the continuous line! is very good.
t511
12v/K

a12
. ~8!

The avalanche mass dimension exponentD can be obtained
from the asymptotic behavior in time of the average wid
@10#:

waverage5
*0

`yGt~x,y!dy

*0
`Gt~x,y!dy

;t1/~a12!. ~9!

We numerically obtained the local variance and the lo
drift for the one-dimensional Bak-Sneppen model in the
terval ~10,100!. This corresponds to an avalanche maxim
temporal size of order 106 as the average maximum widt
scalesw̄max't0.42 ~Fig. 2!. The average lifetime of an ava
lanche at a given width increases linearly, as Fig. 3 sho
The critical exponentb, defined in Eq.~5!, was measured
from the local drift data and from the asymptotic behavior
the backward jumps distribution; see Figs. 2 and 1. Th
value agrees withb52.4060.05. Using Eq.~9!, for the
mass dimension exponentD2150.4160.02 we obtain a
value which is in agreement with the previous measureme
@3,8#. The precise measurement of the constantsv andK is
difficult due to the high weight of the short backwards jum
in respect to the long ones,~Fig. 1!. Hence the number o
steps needed to obtain the distribution at every avalan
width is very large.

There is an indirect but precise method of measuring
exponentsa and 12v/K using the Laplace transform of th
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e
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FIG. 5. The characteristic time~in arbitrary units! in which an
avalanche touches the first time widthy starting from a widthx,y
without passing through the state of zero width. Equation~10! pre-
dicts t̄ xy'ya122xa12'ya12 for y@x. The graph confirms the
algebraic behavior.
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56 2679UNIVERSALITY CLASS FOR A ONE-DIMENSIONAL . . .
probability of first arrival in y stating fromx,y without
touching the origin. For smalll we have@10#

pl
first~x,y!;S x

yD 12~v/K !S 12
1

~a12!2~n11!

3~ya122xa12!l D , ~10!

where a532b1p, y.x. One can see that ifl50, the
previous formula gives the probability for an avalanche
reach, for the first time, a widthy starting from the widthx
without passing through the state with zero width. Numeri
simulation gives an algebraic behavior~see Fig. 4!, and we
obtained 12v/K50.18060.006. The constant multiplying
by l in Eq. ~10! is the characteristic time for an avalanche
touch widthy for the first time starting from widthx. Nu-
merically we found that it behaves as an algebraic funct
,

et-
l

n

of width anda1252.4260.02~Fig. 5!. This two exponents
allow us to compute the critical exponents of the avalan
size distribution using Eqs.~8! and ~9!. We obtain
t51.07460.004 andD2150.41360.008. These values ar
in good agreement with the previous determined ones in
Ref. @4#, t51.07460.004, andD2150.411460.0020.

From the above numeric analysis we conclude that
diffusion equation~7! describes the universality class for th
BS models. The basic facts leading to this description are
follows.

~1! The underlying Markov chain reaches the stationa
state at any finite width of the avalanche; therefore one
think in terms of a stationary probability transition from on
width to another one.

~2! The probability that the activity remains inside of a
avalanche decreases exponentially in time. This is the sec
ingredient needed to complete the Markovian CTRW p
ture.
-
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